CICLO REAL

Todos los procesos reales tienen alguna irreversibilidad, ya sea mecánica por rozamiento, térmica o de otro tipo. Sin embargo, las irreversibilidades se pueden reducir, pudiéndose considerar reversible un proceso cuasiestático y sin efectos disipativos. Los efectos disipativos se reducen minimizando el rozamiento entre las distintas partes del sistema y los gradientes de temperatura; el proceso es cuasiestático si la desviación del equilibrio termodinámico es a lo sumo infinitesimal, esto es, si el tiempo característico del proceso es mucho mayor que el tiempo de relajación (el tiempo que transcurre entre que se altera el equilibrio hasta que se recupera). Por ejemplo, si la velocidad con la que se desplaza un émbolo es pequeña comparada con la del sonido del gas, se puede considerar que las propiedades son uniformes espacialmente, ya que el tiempo de relajación mecánico es del orden de V1/3/a (donde V es el volumen del cilindro y a la velocidad del sonido), tiempo de propagación de las ondas de presión, mucho más pequeño que el tiempo característico del proceso, V1/3/w (donde w es la velocidad del émbolo), y se pueden despreciar las irreversibilidades.

Si se hace que los procesos adiabáticos del ciclo sean lentos para minimizar las irreversibilidades se hace imposible frenar la transferencia de calor. Como las paredes reales del sistema no pueden ser completamente adiabáticas, el aislamiento térmico es imposible, sobre todo si el tiempo característico del proceso es largo. Además, en los procesos isotermos del ciclo existen irreversibilidades inherentes a la transferencia de calor. Por lo tanto, es imposible conseguir un ciclo real libre de irreversibilidades, y por el primer teorema de Carnot la eficiencia será menor que un ciclo ideal.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s